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We give an account and (basically) a solution of a new class of problems 
synthesizing percolation theory and branching diffusion processes. They lead 
to a novel type of stochastic process, namely branching processes with diffusion 
on the space of parameters distinguishing the branching "particles" from each 
other. 
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1. I N T R O D U C T I O N  

Branching stochastic processes (1) have always been very interesting 
for mathematicians and physicists. They describe well a multitude of 
phenomena, from chain reactions to population dynamics. On the other 
hand, ordinary (2) and multiscale (3) percolation play a crucial role in many 
applications. (4) In ref. 5 (see also ref. 6), on the basis of the idea of 
recoding, (7) necessary and sufficient conditions for the discrete hierarchical 
(mu~tiscale) model of fracture (percolation of defects) were obtained. 

In this paper we give an account and (basically) a solution of a new 
class of problems synthesizing percolation theory and branching diffusion 
processes. Such problems arise naturally in recent investigations of the 
global geometry of the inflationary early universe (ref. 8 and references 
therein). 

In Section 2 we present a general formulation of the problem of 
infinite-scale percolation in a new type of branching diffusion process. The 
novelty is the diffusion not in the real space where branching "particles" 
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live, but in the space of parameters distinguishing the "particles" from each 
other. 

We do not specify in the following whether the A diffusion on a 
d-dimensional manifold, which we assume from the very beginning, 
corresponds to some stochastic differential equation (SDE) in the sense of 
It6 or in the sense of Stratonovich. In the applications of ref. 8 we use 
Stratonovich's symmetrized calculus because white noise there is the limit 
of a colored noise with small time correlation. The generating operator 
(.4 operator) of the diffusion in the local coordinate frame is given as 
follows (i, j, k = 1, 2,..., d; the summation over repeated indexes is assumed): 

(i) After It6 

02 ~ i  0 
z~if(X)---~Tik(x)~TkJ(X) oxioj(jf(X)+~.g ~ (X)~-~f(X) (1) 

(ii) After Stratonovich 

1 0 k 0 ~sf(X)=~rik(X)-~-~(~rJ(X)ff-~sf(X))+ ~i(X) o-~f(X ) (2) 

It corresponds to the SDE (in the proper sense) 

dX~ = Y'(X) at + aik(X) o dW~ (3) 

Here X~ E R a, and W~ is the d-dimensional Wiener process. We add to 
the random walk (3) a branching with intensity n(X) [-i.e., the probability 
density of branching of the "particle" at X during the time At is n(X) At]. 
Then we relate to such a branching diffusion some process of breaking up 
of D-dimensional cubes and their coloring and obtain an infinite-scale (in 
the t ~ o0 limit) percolation problem. 

After some preliminaries (Section 3), the solution of the problem is 
stated in Section 4, where necessary and sufficient conditions for percola- 
tion are obtained. In Section 5 we illustrate our method in the case of the 
simplest model. In the summary in Section 6 possible generalizations are 
discussed. 

2. THE PROBLEM 

Let the basic d-dimensional diffusion process generated by the 
operator A of (1), (2) be given by 

lim E ~ f(X'+~')-f(Xt) } ~,~o ( ~ X,=X = M ( X )  (4) 
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where X,~J~ ,  with ~ a d-dimensional manifold. The action of A is 
endowed by the boundary condition 

f(x)  lx~F=0 (5) 

where F c  ~/~ is a closed subset of J/g (an absorbing boundary). 
On d g \ F  the smooth functions n(X), ~i(X), and aiJ(X) are defined 

[see (3)], where n(X) and aiJ(X) are assumed to be positive, such that F 
is accessible. Let there appear at each branching instead of one "particle" 
at point X, the given number r of "particles" at that point, which continue 
to evolve as branching diffusion processes independent of each other. When 
a "particle" reaches the absorbing boundary F, it stays there forever 
without branching. 

Now we will associate this branching diffusion with the following pic- 
ture. Let at t = 0 a D dimensional cubic net be given, consisting of cubes 
of unit size. With each cube of this net independently we set in corre- 
spondence a random point Xo E ~ / w i t h  the probability density 7(X0). The 
subsequent evolution of each cube is independent of the rest of the net. 
This evolution is determined by the above-described basic branching diffu- 
sion on Jg. At t = 0 ,  r trajectories XI ~ ( i=  1 ..... r) of random walkers (3) 
start at X0. We divide the unit cube (call it the cube of zero level) into r 
smaller equal cubes of the first level (we assume that r = k D, so that the 
cubes of the first level are k times smaller than the unit cube). Each first- 
level cube is set in correspondence with one of the points X~~ points 
where the ith "particle" branches for the first time. If the "particle" was 
absorbed at F, we attribute to the corresponding first-level cube the proper 
point X1 e F, color it black, and leave it in peace. We divide the other 
cubes, which should not be colored this time (we call them "white" or 
"living" cubes), once more into the r = k D cubes of the second level and do 
the same procedure, starting from X]~  J// \F.  Thus, coloring some cubes 
at each level q (when (0 Xq ~ F) and dividing white cubes further, we will 
obtain some infinite-scale (provided that the process does not degenerate at 
a finite level) picture of black cubes of different sizes in a "sea" of living 
white cubes (see Fig. 1). 

Denote by N, the multitude of all black cubes of all sizes (and by 
that of all white cubes) belonging to a particular unit cube at the time t. 
We assume that two cubes of (possibly) different sizes are connected if they 
have common face. Now we are ready to formulate the problem. 

P rob lem.  Consider the whole net of (zero-level) cubes and denote 
by B, the union of all the multitudes ~,  belonging to all unit cubes in the 
original cubic net. Let 7(X), n(X), and A be given. Does 13, percolate in the 
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Fig. 1. A part of the net containing black squares of different sizes in a sea of white squares. 
Crossed squares are black. 

t ~ oo limit (we will denote the corresponding multitudes of cubes as ~ 
and B ~, respectively) ? 

Note. Percolation of Boo means that a connected non-self-inter- 
secting path a.s. exists on B~ from some point (call it the origin of the 
coordinate frame) up to infinity. 

3. P R E L I M I N A R I E S  

First of all, let us elucidate the condition of nondegeneracy of the 
process of breaking up of the cubes. Let #(t, V) be the number of random 
walkers within the region V c  ~ \ F  at the time t. Introduce the generating 
function 

u(t, X, z ) =  E {z~U'V) l X o =X} (6) 

Noting that the evolution of u(t, X, z) is driven by the diffusion of particles 
and by the branching processes, we obtain 

u( t+At ,  X, z ) =  [ 1 - n ( X )  At] E{u(t, X~,,z) I Xo = X  

+ n(A) At(u(t, X, z)) r (7) 

Here we considered the whole tree of the branching diffusion process 
from t = 0 to t + At and divided it into two parts--a part from t = 0 to 
t = At and a part from t = At to t + At. Up to the first order in At, we have 
only two mutually exclusive possibilities of evolution of the process from 
t = O t o  t=At .  
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1. The single original particle does not branch during this time and 
it diffuses to a new place Xa,. The tree of the branching diffusion process 
from t = At to t+ At differs from the one corresponding to the interval of 
time [0, t] only by its origin X~t. This possibility is represented by the first 
term in the rhs of Eq. (7). 

2. The original particle branches just one time during the period 
from t = 0 to t = At. There appear r species of the tree of the branching 
diffusion process and, in the first order in At, we should not distinguish 
them from the tree corresponding to the interval [0, t]. This possibility is 
represented by the second term in the rhs of Eq. (7). 

Then, using Eq. (4), one easily derives from (7) the (backward) 
differential equation for the generating function 

0 -~u(t,X,z)=Au(t,X,z)+n(X)[ur(t,X,z)-u(t,X,z)] (8) 

and the boundary and initial conditions 

u(t, X, z)[x~r= 1 (9) 

u(O,X,z)={~ if x~v (lo) 
otherwise 

As a consequence of the definition (6), we can write down the equa- 
tions for the (factorial) moments of #(t, V), differentiating Eqs. (8)-(10). 
Note that 

rn?z( t ,X)=E{#( l~- l ) .  . ( # - l ) ]Xo=X}=-~z tU( t ,X , z ) [ z=  ~ (11) 

and 

mt(t,X)=E{l~l(t, V) X o = X }  = Z-~z u(t,X,z)[z=l 

In particular, the equation for the first moment 

ml(t, X) = z ~z u(t, X, Z)]z =, 

(12) 

(the average number of random walkers in V at the time t) is 

~t rnl(t, X) = Arnl(t, X) + (r - 1) n(X) ml(t, X) (13) 



804 Mezhlumian and Molchanov 

ml(t, X)lx.r=O 

rnx(0, X) = {10 if X e V  
otherwise 

Equations (13)-(15) have an asymptotic (t--* oo) solution 

(14) 

( 1 5 )  

ml(t, X) oc e~"$l(X) fvdY ~l( r) (16) 

Here ~01(X) is the unique strictly positive real eigenfunction of the marginal 
problem 

zz~l# l(X) -[- ( r -  1) n(X) ~Ol(X) = )~1 ~1(X) (17) 

t#l(X) lx~r=O (t8) 

and 21 is the corresponding (real) eigenvalue. The function ~I(X) 
(invariant density) is the unique strictly positive eigenfunction of the 
adjoint equation with the same eigenvalue 21, 

2t~1(X) 2i- ( r -  1) n(X) nl(X) = ~L1 ~1(X) (19) 

~ l ( x )  I x~, -  = 0 (20) 

The normalizations are as follows: 

I~\r ~l(X) dX= 1; !~,\r~l(X) $1(X) dX= 1 (21) 

One can see from (16) that if 21 <0,  then the branching process a.s. 
degenerates in the limit t --* oo (in our notations Woo = ~ ) .  If 21 > 0, then 
the branching process is supercritical and Woo # ~ .  We assume the latter 
case in the rest of the paper. 

Let us introduce two other useful functions. The first one is the prob- 
ability of the event R, that the particle gets absorbed at F at some time less 
than or equal to t provided that it started to diffuse from some point 
X e  d g \ F  at the time t = 0 and did not branch before being absorbed: 

p(X, t)= P{Rt I Xo=X} (22) 

Consider the moment of time t + At. It is obvious from the definition above 
that (in the first order in At) 

p(X, t+At)= [ 1 - n ( X ) A t ]  E{p(Xz,,/)lXo=X} (23) 
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and the following (backward) differential equation as well as the initial and 
boundary conditions follow immediately from (23) and (4): 

p(X, t) = flp(X, t) - n(X) p(X, t) (24) 

p(X, t ) fx~r= 1 (25) 

{10 if x ~ r  p(X, 0 ) =  (26) 
otherwise 

In the rest of this paper we will use only the stationary probability 
p(X) of absorption of a particle which starts its random walk at X without 
branching before absorption. It is given by the stationary solution of 
Eqs. (24)-(26). Since n(X) is positive and the maximal eigenvalue of A with 
zero boundary condition on F is negative, 2 = 0 is not an eigenvalue of 
[ A -  n(X)] and the stationary equation 

]lp(X) -- n(X) p(X) = 0; p(X)]x~ r = 1 (27) 

has a unique solution. Of course, the relation limt_~oo p(X, t )=p(X)  is 
satisfied. 

Then, let us introduce the probability density in Y 

K(X, Y, t)= P{9lt(Y) J Xo=X} (28) 

where 9t,(Y) is the event that the particle branches for the first time in the 
infinitesimal volume Y+ dY at some time less than or equal to t, provided 
that it starts to diffuse at X at t = 0. Consider the evolution of this quantity 
after time At in the first order in At. One has 

K(X, Y, t) = n(X) zlt 6( Y -  X) + I -1 -n (X)At ]  

• E{K(X3,, Y, t+At)  l X o = X }  (29) 

Here the first term represents the event that the particle branches 
during the time interval [0, At] and we should not distinguish the position 
of the particle at t = 0 and t = At in the first order in At. The second term 
represents the event that the particle does not branch during the time inter- 
val [0, At] and in the first order in At the only difference we should take 
into account for that particle's trajectory during the time interval 
[At, t + At] is its random initial point X~t at the beginning of that interval. 
These are the only two mutually exclusive events which exist in the first 
order in At. From the definition (28) and Eq. (29) one easily obtains the 
(backward) differential equation and the boundary and initial conditions 
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8 
~t K(X, Y, t) = A x K ( X ,  Y, t) - n(X) K(X, Y, t) + n(Y) 8 ( X -  Y) (30) 

K(X, Y, t)lx~r= K(X, I1, t ) l r ~ r = 0  (31) 

K(X, r,  O) = ~ ( X -  r') (32) 

Here Ax denotes the generating differential operator of diffusion acting 
on the first variable of K(X, Y, t). In what follows we will need only the 
stationary probability density K(X, Y), which satisfies the equations 

AxK(X, Y) -n(X)K(X,  Y ) + n ( r ) 8 ( X -  Y)=0 (33) 

K(X, Y)Ix~r=K(X, r ) l r r  (34) 

One can write down the expression for K(X, Y) through the complete 
orthonormal set of eigenfunctions Ks(X) and eigenvalues xs of the marginal 
problem 

~I Ks( X) - n( X) K,( X) = ~ ~Ks( X ) (35) 

K~(X) [x~r= 0 (36) 

Recalling the following properties of the eigenfunctions 

E 
\ F  s =  1 

one easily obtains 

1_ 
K(X, Y) : - n(Y) Z K~(X) K~(Y) 

s = l  Ks  

(37) 

(38) 

Now, with the functions p(X) and K(X, Y) in hand, we are ready to 
solve the problem stated in the preceding section. 

4. I N F I N I T E - S C A L E  P E R C O L A T I O N  

In this section we will find the percolation characteristics of Boo using 
the renormalization relations which arise as a result of the recoding proce- 
dure. This procedure was introduced in the case of the simpler model of 
discrete hierarchical fracture in ref. 7 and was investigated in detail in ref. 5. 

Consider the multitude ~)t belonging to a particular unit cube at some 
large time t. Let us concentrate for the moment on the percolation charac- 
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teristics of this unit cube. Let us define the notion of "strongly defective" 
cubes. 4 

Definit ion 1. A cube of level L is called "strongly defective" of 
rank 0 (SD~)) if it is black. It is called "strongly defective" of rank m > 0 
(SD~ m)) if either it is black or the following two conditions are satisfied: 

1. There exists a connected cluster of SD{c+q 1~ cubes of level L + 1 
which connects each pair of faces of the given cube. 

2. Strictly more than half of the surface of each face of the cube is 
covered by SD{c+-~ t) cubes belonging to one of the clusters defined 
in 1. 

A cube is said to be SD if it is SD (") for some n ~> 0. 

We assume in the main body of the text k/> 3. In the k = 2 case more 
case is needed due to the fact that there are no nontrivial configurations 
satisfying condition 2 (see Section 6). The meaning of this definition is 
revealed by the following obvious result. 

Proposition 1. If any number of SD cubes of some level L are 
attached face to face, then there is a connected cluster of black cubes 
(consisting, maybe, of cubes of different levels K>~L) running through 
them. If a cube is SD (m), then it is SD {") for every n > m. 

Note that it is the condition 2 of Definition 1 that ensures the percola- 
tion of the black color through the attached faces of SD cubes. Thus, SD 
cubes are as good as black ones when we deal with the percolation of the 
black color through the net of cubes. It is this kind of substitution of black 
cubes by SD cubes that was called the "recoding procedure" in ref. 7 and 
that enables us to follow the "renormalization approach" of refs. 5 and 7. 

The opposite proposition (that SD cubes always consist of SD cubes) 
is false (see Fig. 2). That is why we can obtain only the sufficient (but not 
necessary) condition for percolation assuming that the probability of the 
level-L cube to be SD can be computed neglecting such configurations as 
in Fig. 2, 

p fSD  configuration of]  
Px{SDL}=Px{BL}+(1-Px{BL}) x~ l e v e l L + l c u b e s  S (39) 

where the subscript L denotes the level of the cubes and the subscript X 
takes into account the fact that we deal with probabilities depending on the 

4 We call black cubes "defects" to resemble the rock fracture theory. (7) 

822/71/3-4-29 
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Fig. 2. 
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Counterexample. The square of zero level is SD, although four of nine squares of the 
first level are not SD. 

value of the parameter associated with the given cube. We are interested in 
calculation of Px{SDo}. Let us recall that SD means SD (") for some n ~> 0. 
In other words, we should find the limit 

P{X}  = lira Px{SD(o ")} (40) 
r t ~ o o  

Let us forget for a while about the time dependence of the problem and use 
the stationary equation 

Px{SD(o m} =p(X)+ [1 - p(X)] f~\rK(X, Y) QD, k(P~{SD]" ~)})dY 

(41) 

where p(X) and K(X, Y) were introduced in the preceding section [see 
(27), (33)-(38)]. Equation (41) gives the probability for the zero-level 
cube to be SD(0 ") in terms of the probabilities of the first-level cubes to be 
SD~ "-1) provided that the parameters associated with them are such that 
the "particle" corresponding to the zero-level cube is the "parent" of the 
particles corresponding to the first-level cubes. 

The combinatorial function QD, k(P) which appeared in (41) is a poly- 
nomial in p of r th degree. It counts the probability of SD configurations of 
level-(L + 1) cubes inside of cubes of level L (we assume for the moment 
that p is the probability of black color and q = 1 - p  is the probability of 
white). We will consider in this paper only the simplest case of two- 
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dimensional cubes (squares) and k = 3, although it is only a straightforward 
combinatorial problem to find Qo,k(P) for the other cases, 5 

Q2,3(p) =p9 + 9p8q + 20pTq2 = 12p9 _ 31p8 + 20p7 (42) 

Equation (41) can be continued by the hierarchy 

Px{SD~n 1)} =p(~.-')_}_ [1 --p(X)] f~l dYK(X, Y) QD, k(Py{SD(2n-2)}) 
\F  

�9 ( 4 3 )  

Px{SD(~'_),} = p ( X ) +  E1 - p ( X ) ]  f~r dYK(X, Y) QD,~(Py{SD(~~ 
\ r  

(44) 

Then, recalling that 

(o) Px {SOany level} = p(X) (45) 

we easily find 

Px {SD(o m } = F [ F [  .- .F[p(X)] ... ] ]  =F~[p(X)] (46) 
n times 

Here F,[~b(X)] denotes the nth iteration of the integral operator 

F[~b(X)] = p ( X ) +  [ 1 - p ( X ) ]  f~ dYK(X, Y)Qo.k(q~(Y)) 
\ r  

(47) 

From Eqs. (41)-(47) one can derive that in the n ~  co (t-+ oo) limit 
the iterations converge [under some restrictions on p(Y) and K(X, Y) 
which are necessary to guarantee the uniqueness of the fixed point ] to the 
solution of the following integral equation: 

P{X} = F[P{X}] (48) 

It is worth noting that after Eqs. (41)-(44) it becomes clear why we 
can substitute a t-dependent percolation problem by n-dependent hierarchi- 
cal one. Indeed, up to now we have not mentioned that not all "white" 
cubes of a given level break up simultaneously and consequently there exist 
many "white" cubes of different sizes at the time t. However, our approach 

5 One should remember, however, that computational difficulties grow exponentially fast with 
growing D or k, and the finding of the functions QD, k(P), although remaining a finite 
combinatorial problem, becomes very cumbersome�9 
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is insensitive to this difficulty because different cubes can join the "renor- 
malization flow" at different scales, but all of them approach eventually the 
same fixed point (48). The only modification that can arise from this 
notion is the somewhat stronger condition on the limiting rate t ~ oo when 
one proves the coincidence of lim,~oo Px{SD0(t)} and P{X} from (40). 

In some cases, when the full transition probability density K(X, Y) of 
(38) can be approximated by a finite sum like 

-n(Y) ~ 1Ks(X)Ks(Y ) (49) 
s ~ l  Ks 

the corresponding nonlinear integral equation (48) reduces to an algebraic 
one. This fact can be useful in applications/s) 

Suppose that we found the solution of (48). Then the solution of the 
percolation problem is straightforward. The quantity 

= f  y(Xo)P{Xo} dXo (50) P ,  
\ r  

has the meaning of the probability that the cube of zero level is SD. If p~) 
is the percolation threshold for the site percolation problem on a cubic 
D-dimensional lattice Z D, then, relating black sites to SD cubes, white sites 
to non-SD cubes, and recalling Proposition 1, we come immediately to the 
following result. 

Theorem 1. The sufficient condition for percolation of Boo is 

p,>p~) (51) 

The necessary condition for percolation is the negation of the sufficient 
condition for nonpercolation. Let us introduce the notion of "strictly 
closing" (SC) configurations to obtain the sufficient condition for 
nonpercolation. 

Defini t ion 2. A cube of level L is called "strictly closing" of zero 
rank C (o) (S L ) if it is white. A cube is called "strictly closing" of rank m 
(SC~ m)) if it is either white or it consists of such a configuration of SC(L+-~ 1) 
cubes that there is no connected cluster of the remaining cubes of level 
L + 1 belonging to the SC(L m) cube which could connect any pair of faces of 
that cube. A cube is said to be SC if it is SC (") for some n ~> 0. 

One can easily verify the following result. 

Proposition 2. Any number of SC cubes attached face to face do 
not contain any percolating path of black cubes. If the cube is SC ~m), then 
it is SC (n) for every n > m. 
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Now it is clear that our "renormalization" procedure can be applied. 
Let us denote by a bar all quantities concerning the SC cubes. In complete 
analogy with Eqs. (39)-(48), we obtain 

Px{SC(o -)} = [1 - p ( x ) ]  f~,x, arK(X, r)Q,~,k(Px{SC]"-'~}) (52) 

Px{SC(n I-) 1} = ~[-l:i~[-... (~[-px {SC(n~ l ]  = ~n[-I - -  p ( X ' ) l  

n t i m e s  

(53) 

where we used Px t ~'"'anyf~ level.[~" = 1- -p(X)  and the definitions 

qs[~b(X)] = [1 - p(X)] f dYK(X, Y)QD.k(O(Y)) (54) 
d ~ \ F  

P{X} = lim Px{SC~ )} (55) 
n ~ o o  

Then, we have (under the condition that ~[~b(X)] has a unique fixed 
point) 

P{X} = qs[P{X}] (56) 

Here O_.D,k(q) is the analog of QD.k(P) for closing configurations (q = 1 --p 
is the probability of white color, p is the probability of black). We will use 
in the next section only the simplest combinatorial function of that type, 

Q2,3(q) = q9 + 5qSp + lOqVp2 + 4q6p3 + qSp4 = 3q9 _ 7q8 + 4q7 + q, (57) 

P{X} is the probability for the zero-level cube to be SC. Associating 
white sites of the black site percolation problem on Z D to SC cubes, black 
sites to non-SC cubes, and keeping in mind Proposition 2, we come to the 
following result. 

T h e o r e m  2. Let p ~ ) =  1 - q ~ )  be the nonpercolation threshold for 
the black site percolation problem on Z D. Denote 

q, = f ~r~,(Xo) P{Xo} dXo (58) 

Then the necessary condition for percolation (negation of the sufficient 
condition for nonpercolation ) of B~ is 

q ,  < q ~  (59) 



812 Mezhlumian and Molchanov 

5. THE S I M P L E S T  M O D E L  

Here we will investigate the simplest model of the type described 
above. It corresponds to homogeneous diffusion on the line segment 
~ '  = [0; l], F = {0; 1 }, d =  1, with 

~ ( x )  = O; a(x) = a = const (60) 

1 
n(x)=a2=const; ~(x)= 7 (61) 

0 -2 d 2 
f l f(x) = ~ dx 2 f (x)  (62) 

and to the D --2, k =  3, r - -9  case of the cubic net. From Eqs. (17) and (18) 
we obtain 

T[20- 2 
21 = 8 a  2 - - " 2 l  2 (63) 

and the nondegeneracy condition is alia > re/4. Assuming this, one can 
derive from Eqs. (27) and (33)-(38) 

cosh(�89 - z) (64) 
p ( z ) -  cosh(�89 

f ~  sinh(~- z) sinh(u) if z >~ u 
K(z, u)=  (65) 

t.l sinh(~) sinh(~ - u) sinh(z) if z ~< u 

where we have introduced the dimensionless variables and the parameter ~, 
which is in fact the only dimensionless parameter in this model and on 
which the behavior of the model depends essentially, 

x / 2  a x .  
Z ~- , U 

f f  

Equation (48) now reads 

P { z } -  c~189 z) (1 
cosh(�89 + 

[ s inh(~-  z) fo 

~/2 ay; ~=x/2 al (66) 
0- (r 

+ sinh(z)f ~ du 

cosh(�89 

sinh(u) . . . .  , , ,  
du ~ ~d2,3t v tu ~ ) 

sinh(( - u) Q2,3(P{u}) 7 J (67) 
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Introduce the function 

/~(z) : f~ 
sinh(u) 

"au ~ Qz,3(P{u}) (68) 

Because we have p(~-z)=p(z), symmetry reasons lead us to 
P{~-z}  = P{z} and Eq. (67) now reads 

P{z} c o s h ( � 8 9  t- (1 c~ 
cosh(�89 cosh(�89 / 

x [sinh(~ - z )  fl(z) + sinh(z) fi(~ - z ) ]  (69) 

One can derive an ordinary differential equation for fi(z) from (68) 
and (69), but it is too involved and we do not produce it here. Instead, we 
present the result of the computer solution of inequality (51) in terms of ~, 
which was calculated using (68) and (69) and assuming the known value 
of p~)=  0.59. Thus, the sufficient condition is 

~< (surf = 3.29 (70) 

Equations for the necessary condition are [see (54)-(59)] 

cosh(�89 
P{z} = 1 co--0-~-(~-) J [s inh(~-z)  g(z)+ sinh(z) g ( ( - z ) ]  (71) 

u sinh(u) 
g(z) = J0 du ~ 02,3(P{u}) (72) 

Our estimate for the necessary condition (59) is too crude for this 
particular model and we do not produce the result here. However, we 
think that the sufficient condition (70) is reasonably close to the exact 
critical value of (. This can be confirmed by calculation of the next level of 
corrections to it [compare with Eqs. (73), (74), where such corrections are 
the leading ones]. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

We have described a new class of problems, synthesizing problems 
from familiar percolation and branching diffusion. To find the percolation 
characteristics, one has to solve the analytic relations (47)-(51) and 
(54)-(59). 

Let us emphasize some possible generalizations. First of all, it is worth 
noting that face-connectedness, which we assumed throughout this paper, 
can be replaced by a great variety of other "quasilocal" definitions of con- 
nectedness. By this we mean a definition which would deal with some finite 
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clusters of black cubes (possibly of different sizes) with some rules restrict- 
ing their configurations. If something like Propositions 1 and 2 holds, then 
only a minor modification of our approach, reduced mainly to a change of 
the combinatorial functions QD, k(P) and Qo, k(q) and maybe the number of 
levels of hierarchy involved in the construction of recurrent formulas of 
type (41) and (52), should be expected. For example, one can consider two 
black cubes to be connected iff the minimum path from one to the other 
contains no more than R0 white cubes. This would correspond, in some 
sense, to defects with "spheres of influence," which were investigated in 
one-scale models (3) (R0 = 0 corresponds to face-to-face connectedness, i.e., 
the present paper). With this modification, the problem will have an addi- 
tional parameter Ro and, presumably, nontrivial dependence on that 
parameter. One can consider a new problem by taking the other 
parameters of the model fixed and letting Ro vary. It is clear that even if 
there were no percolation of this "sphere of influence" for small Ro, it 
would presumably occur for sufficiently large "radius of sphere" Ro, and 
therefore we would have a percolation phase transition at some inter- 
mediate value of Ro. 

However, the consideration of more than two levels of hierarchy 
appears to be necessary already for Ro = 0 if we consider the k = 2 case. 
Here we present the analogs of Eqs. (47) and (54) for the k = 2  case. 
Because at the first step of breaking up there are no nontrivial SD (and 
SC) configurations, one has to consider two steps of breaking up (and 
therefore three levels of hierarchy) in order to derive the corresponding 
integral operator. The form of this integral operator is given by 

F(z)[P{X}] 

= p(x)+ [1-p(x)] dY/ (x, (o"(r) 

+ p3( Y)[1 - p( Y)] f dZ K( Y, Z) Q(2~)2(P{Z}) 

+ p2(y)[ 1 _ p(y)]2 f dZdUK(Y, Z) K(Y, U) Q2,2(p{z},(2) P{U}) 

p(y)]3 f dZ dUdVK(Y, Z) K(Y, U) K(Y, V) + p(Y)[1 

x Q~3,)z(P{Z}, P{U}, P{V}) 

_fl(y)]4 f de dUdVdWK(Y, Z) K(Y, U) K(Y, V) K(Y, W) + [1 

• Q~4)z(P{Z}, P{U}, P{V}, P{ W})) (73) 
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where the combinatorial functions Q(zl)z(p~),, k52,2tFl,n(2)/n P2), ~f.;2,2~,Fl,n(3)t" P2, P3), 
and f) (4) [n ~2,2~,/'1, P2, P3, P4) are introduced which count the "strongly defec- 
tive" configurations of black cubes of two subsequent levels L + 1 and 
L + 2 of the hierarchy within the "parent" cube of level L for the cases 
when only one (two, three, or four, respectively) of the cubes of level L + 1 
is broken up to cubes of level L + 2 [and the first term in the integrand 
takes into account the only SD configuration when none of (L + 1)-level 
cubes is broken up]. Their expressions as polynomials of Pi are too 
involved and do not seem to contain any clarifying information, so we do 
not produce them here. Equations (48)-(51) are implemented with F(2)[ �9 ] 
instead of F[- ]. Analogously, for the necessary condition we should use in 
(56) the following expression instead of qs[. ] [see (54)] 

~b(Z)EP{X}] 

-- [I- p(Y)] f dY K(X, Y)([i - p(y)]4 

x f dZ dU dV dW K( Y, Z) K( Y, U) K( Y, V) K( Y, W) 

X --(4) ) Q2,z(P{Z}, P{U}, P{V}, P{W}) (74) 

with obvious notations. 
Second, one can generalize the branching diffusion part of the 

problem. For instance, the number r can be considered to be random 
(possibly as a function of X,). This, of course, will make the problem of the 
definition of "strongly defective" and "strictly closing" configurations more 
complicated because in this case we should deal with face-to-face attached 
cubes which are broken up in substantially different ways and we should 
pay much more attention to ensuring the existence of something like 
Propositions 1 and 2. However, we think that the revision might be only 
technical (taking into account that the branching diffusion part of the 
problem may be generalized to this case easily (1~ and in physical applica- 
tions such a modification can always be absorbed by some corrections to 
the function n(Y). 

One can improve the evaluation of both necessary and sufficient 
conditions considering three (or more) steps instead of two. In principle 
this can be done and one would obtain equations similar to (73) and (74), 
but computational difficulties increase very fast, making this method hardly 
applicable. 

For applications it is very interesting to develop method of 
approximate solution of Eqs. (48) and (56). Sometimes approximations 
which reduce K(X, Y) to a degenerate kernel are not so bad. 
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Anyway,  the investigated problem has physical significance. (s) It  may  
occur that slightly complicated models of fracture currently used in 
geophysics(6, 7) as well as some generalizations of the models currently used 
to describe the intermittent behavior  of high-energy scattering processes (11) 
also will lead to similar problems. We hope that  the applications will not  
be limited to these known  areas. 
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